Scroll to navigation

CATANH(3) Linux Programmer's Manual CATANH(3)

NAME

catanh, catanhf, catanhl - complex arc tangents hyperbolic

SYNOPSIS

#include <complex.h>

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

Link with -lm.

DESCRIPTION

The catanh() function calculates the complex arc hyperbolic tangent of z. If y = catanh(z), then z = ctanh(y). The imaginary part of y is chosen in the interval [-pi/2,pi/2].

One has:


catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))

VERSIONS

These functions first appeared in glibc in version 2.1.

CONFORMING TO

C99.

EXAMPLE

/* Link with "-lm" */
#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
int
main(int argc, char *argv[])
{

double complex z, c, f;
if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);
}
z = atof(argv[1]) + atof(argv[2]) * I;
c = catanh(z);
printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c));
f = 0.5 * (clog(1 + z) - clog(1 - z));
printf("formula = %6.3f %6.3f*i\n", creal(f2), cimag(f2));
exit(EXIT_SUCCESS); }

SEE ALSO

atanh(3), cabs(3), cimag(3), ctanh(3), complex(7)

COLOPHON

This page is part of release 3.53 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.

2011-09-15